Minggu, 31 Mei 2009

First Round to Freedom!

OK, tommorow will be the first half our last battle with mathematics! So here I brought you a compilation of trigonometry forumulas.

SUM OF 2 ANGLES (a + b)*

sin(a + b) = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b ) = tg a + tg b
1 - tg2a

DIFFERENCE OF 2 ANGLES (a - b)*

sin(a - b) = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b ) = tg a - tg b
1 + tg2a


DOUBLE ANGLES*
sin 2a = 2 sin a cos a
cos 2
a = cos2a - sin2 a
= 2 cos2
a - 1
= 1 - 2 sin2
a
tg 2
a = 2 tg 2a
1 - tg2
a
sin
a cos a = ½ sin 2a
cos2
a = ½(1 + cos 2a)
sin2
a = ½ (1 - cos 2a)

Commonly:


sin n
a = 2 sin ½na cos ½na
cos n
a = cos2 ½na - 1
= 2 cos2 ½n
a - 1
= 1 - 2 sin2 ½n
a
tg n
a = 2 tg ½na
1 - tg2 ½n
a
SUM OF DIFFERENCE BETWEEN 2 SAME ANGLE FUNCTIONS


MULTIPLY AND SUM FORM


sin
a + sin b = 2 sin a + b cos a - b
2 2
sin
a - sin b = 2 cos a + b sin a - b
2 2
cos
a + cos b = 2 cos a + b cos a - b
2 2
cos
a + cos b = - 2 sin a + b sin a - b
2 2

MULTIPLY
® SUM FORM*

2 sin
a cos b = sin (a + b) + sin (a - b)
2 cos
a sin b = sin (a + b) - sin (a - b)
2 cos
a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

SUM OF DIFFERENT FUNCTIONS

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x -
a)


a cos x + b sin x = K cos (x-
a)
dengan :
K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut


I
II
III
IV
a
+
-
-
+
b
+
+
-
-
keterangan :
a = koefisien cos x
b = koefisien sin x

EQUATION
I. sin x = sin
a Þ x1 = a + n.360°
x2 = (180° -
a) + n.360°



cos x = cos
a Þ x = ± a + n.360°


tg x = tg a
Þ x = a + n.180° (n = bilangan bulat)

II. a cos x + b sin x = c
a cos x + b sin x = C
K cos (x-
a) = C
cos (x-
a) = C/K
this equation can be solved by
-1
£ C/K £ 1 atau K² ³ (if K is in root form)

If C/K = cos
b
cos (x -
a) = cos b
(x -
a) = ± b + n.360° ® x = (a ± b) + n.360°


This formulas are derived from this site. Spread credits to them first!

As for our test, I think the trigonometries would mostly contains of the topics ended by an asterisk (*).
Wish us luck in the test! (won't only wish you since I want to be lucky too huehuehue)

2 komentar:

  1. Yupz. Tapi waktu wa kerja soal2x limit ama salah satu bab semester 2 (lali) masih sering ketemu rumus2x itu~

    BalasHapus

Please leave your comment here. Thank you!